in physics, tenet that a complete knowledge of phenomena on atomic dimensions requires a description of both wave and particle properties. The principle was announced in 1928 by the Danish physicist Niels Bohr. Depending on the experimental arrangement, the behaviour of such phenomena as light and electrons is sometimes wavelike and sometimes particle-like; i.e., such things have a wave-particle duality (q.v.). It is impossible to observe both the wave and particle aspects simultaneously. Together, however, they present a fuller description than either of the two taken alone. In effect, the complementarity principle implies that phenomena on the atomic and subatomic scale are not strictly like large-scale particles or waves (e.g., billiard balls and water waves). Such particle and wave characteristics in the same large-scale phenomenon are incompatible rather than complementary. Knowledge of a small-scale phenomenon, however, is essentially incomplete until both aspects are known.
COMPLEMENTARITY PRINCIPLE
Meaning of COMPLEMENTARITY PRINCIPLE in English
Britannica English vocabulary. Английский словарь Британика. 2012