also called Hyperbolic Trigonometric Function the hyperbolic sine of z (written sinh z); the hyperbolic cosine of z, written cosh z; the hyperbolic tangent of z, written tanh z; and the hyperbolic cosecant, secant, and cotangent of z. These functions are often defined in terms of the exponential function (q.v.), with sinh z = 1/2(ez - e-z) and cosh z = 1/2(ez + e-z) and with the other hyperbolic trigonometric functions defined in a manner analogous to ordinary trigonometry. Figure 6: The hyperbolic functions cosh x and sinh x. hyperbolic geometry also called Lobachevskian Geometry, a non-Euclidean geometry that rejects the validity of Euclid's fifth, the parallel, postulate. Simply stated, this Euclidean postulate is: through a point not on a given line there is exactly one line parallel to the given line. In hyperbolic geometry, through a point not on a given line there are at least two lines parallel to the given line. The tenets of hyperbolic geometry, however, admit the other four Euclidean postulates. Compare Riemannian geometry. Although many of the theorems of hyperbolic geometry are identical to those of Euclidean, others differ. In Euclidean geometry, for example, two parallel lines are taken to be everywhere equidistant. In hyperbolic geometry, two parallel lines are taken to converge in one direction and diverge in the other. In Euclidean, the sum of the angles in a triangle is equal to two right angles; in hyperbolic, the sum is less than two right angles. In Euclidean, polygons of differing areas can be similar; and in hyperbolic, similar polygons of differing areas do not exist. The first published works expounding the existence of hyperbolic and other non-Euclidean geometries are those of a Russian mathematician, Nikolay Ivanovich Lobachevsky, who wrote on the subject in 1829, and, independently, the Hungarian mathematicians Farkas and Jnos Bolyai, father and son, in 1831.
HYPERBOLIC FUNCTION
Meaning of HYPERBOLIC FUNCTION in English
Britannica English vocabulary. Английский словарь Британика. 2012