any of a class of small, natural glassy objects that are found only in certain areas of the Earth's surface. The term is derived from the Greek word tektos, meaning melted, or molten. Tektites have been the subject of intense scientific scrutiny throughout much of the 20th century owing to their unknown and possibly extraterrestrial origins, but they are now recognized as having formed from the melting and rapid cooling of terrestrial rocks that have been vaporized by the high-energy impacts of large meteorites, comets, or asteroids upon the surface of the Earth. The extremely high temperatures and enormous pressures generated by such impacts melted the rocks at the site, producing clouds of molten silicate droplets that quickly cooled to a glassy form before falling back to Earth. Tektites range in size from a few tens of micrometres to about 10 cm (4 inches) in diameter. Those larger than a few millimetres are all rich in silica; they are somewhat like terrestrial obsidians but differ from them and other terrestrial volcanic glasses by their lower water content. Chemically, tektites are further distinguished from acid igneous (granitic) rocks by their lower content of soda and potash and their higher content of lime, magnesia, and iron. Under the microscope, tektites are seen to lack the small crystals (microlites) characteristic of terrestrial volcanic glasses. Tektites are of varied colour, shape, and surface sculpture. In colour they range from green or dark brown to black. Some are lustrous and others have a delicate sheen from minute alternating ridges and furrows that swirl over the entire surface. The younger, less-corroded tektites include those with spherical, elliptical, lenticular, teardrop, dumbbell, disk, and button shapes. Microtektites of millimetre and smaller size, first discovered in 1968, exhibit wider variation in composition than the large tektites; e.g., their silica content can be as low as 50 percent, similar to that of terrestrial basalts. Microtektites have been found so far only in deep-sea sediments, probably because of the difficulty of distinguishing them in the more abundant and coarser land sediments. They are distinguished from volcanic ash by their rounded shapes and composition, which is identical with that of the large tektites.
TEKTITE
Meaning of TEKTITE in English
Britannica English vocabulary. Английский словарь Британика. 2012