КОНИЧЕСКИЕ


Значение КОНИЧЕСКИЕ в английском языке

КОНИЧЕСКИЕ СЕЧЕНИЯ Определения Паппа. Установление фокуса параболы навело Паппа на мысль дать альтернативное определение конических сечений в целом. Пусть F - заданная точка (фокус), а L - заданная прямая (директриса), не проходящая через F, и DF и DL - расстояния от подвижной точки P до фокуса F и директрисы L соответственно. Тогда, как показал Папп, конические сечения определяются как геометрические места точек P, для которых отношение DF/DL является неотрицательной постоянной. Это отношение называется эксцентриситетом e конического сечения. При e коническое сечение - эллипс; при e 1 - гипербола; при e 1 - парабола. Если F лежит на L, то геометрические места имеют вид прямых (действительных или мнимых), которые являются вырожденными коническими сечениями.

Бросающаяся в глаза симметрия эллипса и гиперболы говорит о том, что у каждой из этих кривых есть по две директрисы и по два фокуса, и это обстоятельство навело Кеплера в 1604 на мысль, что и у параболы существует второй фокус и вторая директриса - бесконечно удаленные точка и прямая. Точно также и окружность можно рассматривать как эллипс, фокусы которого совпадают с центром, а директрисы находятся в бесконечности. Эксцентриситет e в этом случае равен нулю.

Конструкция Данделена. Фокусы и директрисы конического сечения можно наглядно продемонстрировать, если воспользоваться сферами, вписанными в конус и называемыми сферами (шарами) Данделена в честь бельгийского математика и инженера Ж.Данделена (1794-1847), предложившего следующую конструкцию. Пусть коническое сечение образовано пересечением некоторой плоскости p с двухполостным прямым круговым конусом с вершиной в точке O. Впишем в этот конус две сферы S1 и S2, которые касаются плоскости p в точках F1 и F2 соответственно. Если коническое сечение - эллипс (рис. 5,а), то обе сферы находятся внутри одной и той же полости: одна сфера расположена над плоскостью p, а другая - под ней. Каждая образующая конуса касается обеих сфер, и геометрическое место точек касания имеет вид двух окружностей C1 и C2, расположенных в параллельных плоскостях p1 и p2. Пусть P - произвольная точка на коническом сечении. Проведем прямые PF1, PF2 и продлим прямую PO. Эти прямые - касательные к сферам в точках F1, F2 и R1, R2. Поскольку все касательные, проведенные к сфере из одной точки, равны, то PF1 PR1 и PF2 PR2. Следовательно, PF1 + PF2 PR1 + PR2 R1R2. Так как плоскости p1 и p2 параллельны, отрезок R1R2 имеет постоянную длину. Таким образом, величина PR1 + PR2 одна и та же для всех положений точки P, и точка P принадлежит геометрическому месту точек, для которых сумма расстояний от P до F1 и F2 постоянна. Следовательно, точки F1 и F2 - фокусы эллиптического сечения. Кроме того, можно показать, что прямые, по которым плоскость p пересекает плоскости p1 и p2, - директрисы построенного эллипса. Если p пересекает обе полости конуса (рис. 5,б), то две сферы Данделена лежат по одну сторону от плоскости p, по одной сфере в каждой полости конуса. В этом случае разность между PF1 и PF2 постоянна, и геометрическое место точек P имеет форму гиперболы с фокусами F1 и F2 и прямыми - линиями пересечения p с p1 и p2 - в качестве директрис. Если коническое сечение - парабола, как показано на рис. 5,в, то в конус можно вписать только одну сферу Данделена.

Другие свойства. Свойства конических сечений поистине неисчерпаемы, и любое из них можно принять за определяющее. Важное место в Математическом собрании Паппа (ок. 300), Геометрии Декарта (1637) и Началах Ньютона (1687) занимает задача о геометрическом месте точек относительно четырех прямых. Если на плоскости заданы четыре прямые L1, L2, L3 и L4 (две из которых могут совпадать) и точка P такова, что произведение расстояний от P до L1 и L2 пропорционально произведению расстояний от P до L3 и L4, то геометрическое место точек P является коническим сечением. Ошибочно полагая, что Аполлоний и Папп не сумели решить задачу о геометрическом месте точек относительно четырех прямых, Декарт, чтобы получить решение и обобщить его, создал аналитическую геометрию.

Русский словарь Colier.      Russian dictionary Colier.