ОБСЕРВАТОРИЯ Развитие техники радиосвязи в 1930-1940-е годы позволило начать радионаблюдения космических тел. Это новое "окно" во Вселенную принесло множество удивительных открытий. Из всего спектра электромагнитного излучения только оптические и радиоволны проходят сквозь атмосферу к поверхности Земли. При этом "радиоокно" намного шире оптического: оно простирается от волн миллиметровой длины до десятков метров. Кроме известных в оптической астрономии объектов - Солнца, планет и горячих туманностей, - источниками радиоволн оказались неизвестные ранее объекты: холодные облака межзвездного газа, ядра галактик и взрывающиеся звезды.
Типы радиотелескопов. Радиоизлучение космических объектов является очень слабым. Чтобы заметить его на фоне естественных и искусственных помех, необходимы узконаправленные антенны, принимающие сигнал только из одной точки на небе. Такие антенны бывают двух типов. Для коротковолнового излучения их делают из металла в виде вогнутого параболического зеркала (как у оптического телескопа), которое концентрирует в фокусе падающее на него излучение. Такие рефлекторы диаметром до 100 м - полноповоротные - способны смотреть в любую часть неба (как оптический телескоп). Более крупные антенны выполняют в виде параболического цилиндра, способного поворачиваться только в плоскости меридиана (как оптический меридианный круг). Поворот вокруг второй оси обеспечивает вращение Земли. Самые крупные параболоиды делают неподвижными, используя естественные котловины в грунте. Они могут наблюдать лишь ограниченную область неба.
Антенны для длинноволнового излучения монтируют из большого числа простых металлических диполей, размещаемых на площади в несколько квадратных километров и соединяемых между собой так, что принятые ими сигналы усиливают друг друга только в том случае, если приходят с определенного направления. Чем больше размер антенны, тем более узкую область на небе она осматривает, давая при этом более четкую картину объекта. Примером такого инструмента может служить УТР-2 (Украинский Т-образный радиотелескоп) харьковского Института радиофизики и электроники АН Украины. Длина двух его плеч 1860 и 900 м; он является самым совершенным в мире инструментом для исследования декаметрового излучения в диапазоне 12-30 м.
Принцип объединения нескольких антенн в систему используется и для параболических радиотелескопов: объединив сигналы, принятые от одного объекта несколькими антеннами, получают как бы один сигнал от эквивалентной по размеру одной гигантской антенны. Это существенно улучшает качество полученных радиоизображений. Такие системы называют радиоинтерферометрами, поскольку сигналы от разных антенн, складываясь, интерферируют между собой. Изображения от радиоинтерферометров по качеству не хуже оптических: наименьшие детали имеют размер около 1', а если объединить сигналы от антенн, находящихся на разных континентах, то размер наименьших деталей на изображении объекта может быть уменьшен еще в тысячи раз.
Собранный антенной сигнал детектируется и усиливается специальным приемником - радиометром, который обычно настроен на одну фиксированную частоту или меняет настройку в узкой полосе частот. Для уменьшения собственных шумов радиометры часто охлаждают до очень низкой температуры. Усиленный сигнал записывают на магнитофон или в компьютер. Мощность принятого сигнала обычно выражается в терминах "антенной температуры", как если бы на месте антенны находилось абсолютно черное тело данной температуры, выделяющее такую же мощность. Измерив мощность сигнала на разных частотах, строят радиоспектр, форма которого позволяет судить о механизме излучения и физической природе объекта.
Радиоастрономические наблюдения можно проводить ночью и днем, если не мешают помехи от промышленных объектов: искрящие электромоторы, широковещательные радиостанции, радары. По этой причине радиообсерватории обычно устраивают вдали от городов. Особых требований к качеству атмосферы у радиоастрономов нет, но при наблюдении на волнах короче 3 см атмосфера становится помехой, поэтому коротковолновые антенны предпочитают ставить высоко в горах.
Некоторые радиотелескопы используют как радары, посылая мощный сигнал и принимая отраженный от объекта импульс. Это позволяет точно определять расстояние до планет и астероидов, измерять их скорость и даже строить карту поверхности. Именно так были получены карты поверхности Венеры, которая не видна в оптике сквозь ее плотную атмосферу. См. также РАДИОАСТРОНОМИЯ; РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ.
Радиоастрономические наблюдения. В зависимости от параметров антенны и имеющейся аппаратуры каждая радиообсерватория специализируется на определенном классе объектов наблюдения. Солнце благодаря своей близости к Земле является мощным источником радиоволн. Приходящее из его атмосферы радиоизлучение постоянно регистрируют - это позволяет прогнозировать солнечную активность. В магнитосфере Юпитера и Сатурна происходят активные процессы, радиоимпульсы от которых регулярно наблюдаются в обсерваториях Флориды, Сантьяго и Йельского университета. Крупнейшие антенны Англии, США и России используются для радиолокации планет.
Замечательным открытием было обнаруженное в Лейденской обсерватории (Нидерланды) излучение межзвездного водорода на волне 21 см. Затем по радиолиниям в межзвездной среде были найдены десятки других атомов и сложных молекул, включая органические. Особенно интенсивно молекулы излучают на миллиметровых волнах, для приема которых создаются специальные параболические антенны с высокоточной поверхностью.
Сначала в Кембриджской радиообсерватории (Англия), а затем и в других с начала 1950-х годов проводятся систематические обзоры всего неба для выявления радиоисточников. Некоторые из них совпадают с известными оптическими объектами, но многие не имеют аналогов в других диапазонах излучения и, по-видимому, являются очень далекими объектами. В начале 1960-х годов, обнаружив совпадающие с радиоисточниками слабые звездообразные объекты, астрономы открыли квазары - очень далекие галактики с невероятно активными ядрами.
Время от времени на некоторых радиотелескопах предпринимаются попытки поиска сигналов от внеземных цивилизаций. Первым проектом такого рода был проект Национальной радиоастрономической обсерватории США в 1960 по поиску сигналов от планет ближайших звезд. Как и все последующие поиски, он принес отрицательный результат.