РАКЕТА До конца 20 в. сгорание топлива оставалось основным источником энергии для реактивного движения. Хотя с 1920-х годов было предложено немало перспективных технических концепций, большинство из них не получило практического воплощения.
Гибридные двигатели. Заманчивой альтернативой РДТТ и ЖРД является идея гибридного двигателя, в которой объединены лучшие качества обоих. В гибридном двигателе используются твердое горючее и жидкий окислитель, например жидкий кислород или азотный тетроксид. Такой подход позволяет наполовину упростить систему подачи топлива при сохранении присущей РДТТ компактности. Поскольку окислитель и горючее хранятся раздельно, трещины в твердотопливном заряде горючего менее опасны, чем в традиционном РДТТ, что упрощает его изготовление. Однако, несмотря на значительные исследовательские усилия, особенно в 1980-х годах, эта идея так и не нашла широкого применения. Основная проблема состояла в недостаточно устойчивом и эффективном процессе горения.
Электроракетный двигатель. Электричество можно использовать для нагрева рабочего тела. Примером такого двигателя может служить ионный двигатель, в котором используются высоковольтная дуга для ионизации рабочего тела, например аргона или паров ртути, и электрическое поле для ускорения потока ионов. Принципиальным преимуществом такого двигателя является очень высокий удельный импульс (до 5000 с, в зависимости от конструкции двигателя и используемого рабочего тела). Тяга ионных двигателей очень мала и обычно находится в диапазоне от 0,02 до 0,03 Н. Ионные двигатели предназначаются для длительных космических полетов, когда за месяцы работы в условиях невесомости получается значительный суммарный прирост скорости. Ионные двигатели нашли также применение на геостационарных спутниках, где они обеспечивают постоянный небольшой импульс, достаточный для управления положением и сохранения орбиты. В других схемах ЭРД используются высокоэнергетическая плазма и магнитогидродинамический эффект.
Ядерные ракетные двигатели. Другой реактивной системой, которая едва не получила практическое воплощение, является ядерная. В США в рамках программы по созданию ядерного ракетного двигателя (ЯРД) NERVA был разработан графитовый реактор, охлаждаемый жидким водородом, который испарялся, нагревался и выбрасывался через ракетное сопло. Графит был выбран из-за его высокой температурной стойкости. По проекту NERVA ЯРД должен был развивать тягу 1100 кН в течение одного часа и иметь удельный импульс 800 с, что почти вдвое превышает соответствующий показатель для химических двигателей. Программа NERVA была отменена в 1972 из-за того, что на неопределенный срок был отодвинут пилотируемый полет на Марс, для которого она разрабатывалась.
Разновидность ЯРД, использующего реакцию деления, представляет газофазный ядерный двигатель, в котором медленно движущаяся газовая струя делящегося плутония окружена более быстрым потоком охлаждающего водорода. Эта идея не вышла, однако, из стадии предварительных исследований.
Интересная идея создания двигателя, использующего реакцию аннигиляции материи и антиматерии, изучалась в рамках программы стратегической оборонной инициативы (СОИ) США. Антивещество в виде атомов хранится в электромагнитной ловушке и посредством магнитного поля подается в камеру двигателя, где оно взаимодействует с обычным веществом, превращаясь в гамма-излучение, которое нагревает рабочую жидкость и создает реактивную струю. Хотя магнитные ловушки используются в физике высоких энергий, для получения нескольких граммов антивещества, необходимых для полета, требуется огромное количество энергии.
Внешние источники энергии. В рамках программ СОИ и Национального управления по аэронавтике и исследованию космического пространства (НАСА) также изучалась реактивная система с мощным лазером, который нагревает рабочее тело, находящееся на борту ракеты. Сама ракета имеет небольшую массу, так как основная масса системы приходится на лазер, который может располагаться на Земле. Такая система требует исключительно точного наведения лазерного луча на цель, чтобы не сжечь ракету вместо нагрева рабочего тела. Рассматривалась также идея использования больших зеркал для фокусирования солнечных лучей на двигатель.
Использование энергии атомного взрыва. В 1960-х годах НАСА и Комиссия по атомной энергии США исследовали один довольно экзотический метод получения тяги в рамках проекта "Орион". В этом методе разгон ракеты до большой скорости, необходимой для полета к другим планетам, предполагалось осуществлять путем последовательных взрывов небольших атомных зарядов, выбрасываемых за ракетой. Специальные гасители должны были сглаживать воздействие взрывов. Однако проект "Орион" был отменен в соответствии с международными договорами по использованию космического пространства и ограничению ядерных вооружений.
Фотонные двигатели. Изучалась также возможность использования света для получения тяги в космосе. Частицы света - фотоны - создают очень малый реактивный импульс при воздействии на поверхность. Простейший двигатель такого рода представляет собой огромное пластиковое зеркало, которое отражает солнечные лучи и толкает космический аппарат в сторону от Солнца (солнечный ветер создает добавочный импульс). В настоящем фотонном двигателе вследствие аннигиляции обычного вещества и антивещества должен создаваться поток гамма-излучения, обеспечивающий реактивную тягу для движения космического аппарата.
См. таблицу РАКЕТНЫЕ ДВИГАТЕЛИ/СИСТЕМЫ РЕАКТИВНОГО ДВИЖЕНИЯ.