ТРАНЗИСТОР


Значение ТРАНЗИСТОР в английском языке

ТРАНЗИСТОР Действие электронных ламп основано на управлении током электронов, идущих от нагреваемого электрода (катода) к собирающему электроду (аноду). Катод нагревается отдельным нагревательным элементом. Для работы такого устройства требуется значительное количество электроэнергии.

В полупроводниках не нужно подводить энергию к нагревателю, чтобы получить свободные электроны, а собирающие электроды могут работать при весьма низких напряжениях.

Сопротивление полупроводников можно контролируемо изменять. Это осуществляется путем легирования полупроводника другими химическими элементами. Более того, выбирая тот или иной материал для легирования, можно задавать нужный вид носителей электрического заряда (положительные или отрицательные). Поясним эту мысль.

Все химические элементы, встречающиеся в природе, можно расположить в последовательный ряд по числу положительных зарядов, начиная с водорода, имеющего один положительный заряд в ядре атома (заряд одного протона), и кончая ураном с 92 протонами. Положительный заряд ядра компенсируется оболочками окружающих его электронов (рис. 1). Электроны внутренних оболочек довольно прочно связаны с ядром. Электроны же наружной оболочки связаны слабее; в качестве валентных электронов они могут участвовать в химических процессах, а в качестве электронов проводимости - переносить электрический заряд (электрический ток в металлах есть поток электронов). В таких металлах, как медь, электроны внешних оболочек практически свободны и под влиянием очень слабого электрического поля способны переносить колоссальные токи. Внешние электроны в диэлектриках связаны прочно, поэтому диэлектрики практически не проводят электричества. Полупроводники - это промежуточный случай. Согласно фундаментальному постулату физики, называемому уравнением Больцмана, число N частиц с энергией дается формулой

N A exp ,

где A - константа, характеризующая материал, k - постоянная Больцмана ( 8,6?10-5 эВ/К), а T - абсолютная температура в кельвинах (К). Отсюда видно, что чем прочнее связь и ниже температура, тем меньше освобождается электронов. Если в кремний, который четырехвалентен, ввести фосфор, сурьму или мышьяк, каждый атом которых имеет пять валентных электронов, то один электрон легирующей примеси будет лишним. Этот избыточный электрон связан слабо и легко может действовать как электрон проводимости. Если же в кремний ввести бор, галлий или алюминий, каждый атом которых имеет три валентных электрона, то для образования всех связей будет недоставать одного электрона. В этом случае перенос тока определяется электронными вакансиями, или "дырками". На самом деле электроны под влиянием электрического поля перескакивают от одной вакантной связи к другой, что можно рассматривать как перемещение дырок в противоположном направлении. Электрический ток при этом направлен так же, как и в случае электронов, но по величине он меньше (у электронных "дырок" противоположный знак заряда и меньшая подвижность). В соответствии с законом np N 2 можно произвольно изменять число электронов n или дырок p в единице объема полупроводника, задавая нужное число избыточных доноров или акцепторов электронов. Полупроводники, в которых электронов больше, чем дырок, называются полупроводниками n-типа, а полупроводники, в которых больше дырок, - полупроводниками p-типа. Те носители, которых больше, называются основными носителями, а которых меньше - неосновными. Граница, отделяющая в кристалле область p-типа от области n-типа, называется p-n-переходом.

p-n-Переход. В соединенных вместе кусочках полупроводников n и p-типа ближайшие к границе электроны будут переходить из n-области в p-область, а ближайшие дырки - навстречу им, из p-области в n-область. Сам переход будет образован из положительно заряженных доноров, потерявших свои электроны, на n-стороне, и из отрицательно заряженных акцепторов, потерявших свои дырки, на p-стороне. При этом переход уподобляется заряженному конденсатору, на обкладках которого есть некоторое напряжение. Перетекание электронов и дырок через переход прекращается, как только заряженные ионы создадут на нем напряжение, равное и противоположное контактному потенциалу (напряжению), обусловленному различием знака избыточного заряда в полупроводнике. Если на переход подать соответствующее внешнее напряжение, то ионизуются (теряют свои электроны и дырки) дополнительные доноры и акцепторы, причем в таком количестве, что переход только-только поддерживает приложенное напряжение.

Ценность перехода в том, что он позволяет управлять потоком электронов или дырок, т.е. током. Возьмем типичный случай, когда p-сторона сильно легирована, а n-сторона легирована значительно слабее. Если на переход подать такое напряжение, при котором p-сторона положительна, а n-сторона отрицательна, то внешнее напряжение скомпенсирует внутреннее, т. е. понизит внутренний барьер перехода и тем самым сделает возможным перетекание больших количеств основных носителей (дырок) через барьер. Так, подавая небольшое напряжение в "прямом" направлении, можно управлять большими токами. Если изменить знак внешнего напряжения на обратный (так, чтобы p-сторона была отрицательна, а n-сторона - положительна), то оно еще больше повысит внутренний барьер и полностью перекроет поток основных носителей. (Правда, небольшому количеству неосновных носителей будет легче перетекать через барьер.) Если постепенно повышать "обратное" напряжение, то в конце концов произойдет электрический пробой, и переход может оказаться поврежденным из-за перегрева. Фактическое пробивное напряжение зависит от вида и степени легирования слабо легированной стороны перехода. В устройствах разной конструкции пробивное напряжение может изменяться от 1 до 15 000 В.

Таким образом, одиночный p-n-переход может служить выпрямителем, пропускающим ток в одном направлении и не пропускающим в противоположном. В прямом направлении возможны очень большие токи при напряжении менее 1 В; в обратном же направлении при напряжениях ниже пробивного возможны лишь токи порядка пикоампера (10-12А). Мощные выпрямители могут работать при токах порядка 5000 А, тогда как в устройствах для управления сигнальными токами токи обычно не превышают нескольких миллиампер.

Транзистор. Обычный (биполярный) транзистор, подобно сэндвичу, состоит из двух близко расположенных ("спина к спине") переходов, образующих две отдельные области. Поэтому возможны два типа транзисторов: pnp и npn. В транзисторе входная внешняя область называется эмиттером, средняя область - базой, а выходная внешняя область - коллектором. На рис. 2 представлен транзистор npn-типа. Если база ни к чему не присоединена, то при всех напряжениях на коллекторе и эмиттере ниже пробивного возможен лишь ток утечки. При нормальной работе транзистора в качестве усилителя на эмиттере имеется некоторое напряжение прямого смещения, а на коллекторе - обратного. Для создания прямого смещения в область базы вводится небольшой ток. При этом в диоде эмиттер - база возникает слабое электрическое поле, вследствие чего эмиттер инжектирует в базу заряд. Если толщина базы достаточно мала, то весь этот заряд собирается коллектором. Поскольку напряжение эмиттер - база мало (около 0,6 В), а напряжение коллектор - база велико (как правило, 5-50 В), получается большой выигрыш в напряжении, а также в мощности, т.е. усиление. В транзисторе npn-типа электроны инжектируются в базу эмиттером с напряжением прямого смещения под управлением малого дырочного тока базы и собираются смещенным в обратном направлении (положительным) коллектором. В транзисторах pnp-типа ток дырок, инжектируемых эмиттером, управляется электронами, которые инжектирует база, и коллектор находится под отрицательным потенциалом. Такова суть транзисторного действия. В названии транзистора (транзит, резистор) отражено то, что ток под внешним воздействием пропускается через слой повышенного сопротивления - базу.

Русский словарь Colier.      Russian dictionary Colier.