ХИМИИ ИСТОРИЯ Состав веществ и их классификация. Успехи Лавуазье показали, что применение количественных методов может помочь в определении химического состава веществ и выяснении законов их объединения.
Атомная теория. Английский химик Джон Дальтон (1766-1844), подобно древним атомистам, исходил из представления о корпускулярном строении материи, но, основываясь на понятии химических элементов Лавуазье, принял, что "атомы" (этот термин Дальтон сохранил как дань уважения к Демокриту) данного элемента одинаковы и характеризуются кроме других свойств тем, что обладают определенным весом, который он назвал атомным. Дальтон обнаружил, что два элемента могут соединяться друг с другом в различных соотношениях и каждая новая комбинация элементов дает новое соединение. В 1803 эти результаты были обобщены в виде закона кратных отношений. В 1808 вышел труд Дальтона Новая система химической философии, где он подробно изложил свою атомную теорию. В том же году французский химик Жозеф Луи Гей-Люссак (1778-1850) опубликовал предположение о том, что объемы газов, вступающих в реакцию друг с другом, относятся между собой как простые кратные числа (закон объемных отношений). К сожалению, Дальтон не сумел увидеть в выводах Гей-Люссака ничего, кроме помехи для разработки своей теории, хотя эти выводы могли бы стать очень плодотворными в определении относительных атомных весов.
Химическое сродство. В течение всего 17 в. химики, рассуждая о "сродстве" - тенденции атомов к образованию соединений, - следовали идеям Бехера и Шталя, которые классифицировали все вещества в соответствии с их способностью реагировать со специфическими кислотами.
Исследование сродства и состава различных типов веществ пошло по другому руслу в начале 19 в. с открытием нового аналитического метода. В 1807 английский химик Хамфри Дэви (1778-1829) пропустил электрический ток, получаемый от батареи из 250 металлических пластин, через расплавленный поташ (карбонат калия) и получил маленькие шарики металла, впоследствии названного калием, а затем таким же способом выделил из соды натрий. Дэви предположил, что химическое сродство сводится к электризации атомов при контакте. Шведский химик Йенс Якоб Берцелиус (1779-1848) уточнил и развил представление об атоме и электрическом сродстве, предложив первую концепцию химического взаимодействия - электрохимическую теорию. Берцелиус полагал, что, поскольку соли в растворе под действием электрического тока разлагаются на отрицательные и положительные компоненты, все соединения должны состоять из положительных и отрицательных частей - радикалов (дуалистическая теория Берцелиуса). Кислород - самый электроотрицательный элемент, и те элементы, которые образуют с ним соединения со свойствами оснований, электроположительны, а те, которые образуют вещества с кислотными свойствами, - электроотрицательны. В соответствии с этим Берцелиус получил шкалу элементов, первым членом которой был кислород, затем шли сера, азот, фосфор и т.д. с переходом через водород к натрию, калию и другим металлам. К 1840-м годам, однако, стало ясно, что электрохимическая теория не может объяснить существование простых двухатомных молекул (например, O2 и H2) или реакцию замещения водорода (положительное сродство) хлором (отрицательное сродство).
Классификация по атомному весу. Со времен Дальтона до 1860 в химии не было точного определения понятия атомного веса. Система, основанная на "эквивалентных весах", предложенная английским химиком Уильямом Волластоном (1766-1828), опиралась на соотношения, в которых элементы могли объединяться, и каждый химик мог составить собственный список атомных весов. Не существовало никакой отправной точки для создания системы элементов и никакого соглашения о том, как выражать состав соединений. В 1860 на первом Международном химическом конгрессе в Карлсруэ (Германия) итальянский химик Станислао Канниццаро (1826-1910) вновь вернул к жизни забытую гипотезу своего соотечественника Амедео Авогадро (1776-1856), который, основываясь на открытии Гей-Люссаком закона объемных отношений, предположил, что равные объемы газов содержат одинаковое число молекул. Канниццаро утверждал, что с помощью гипотезы Авогадро можно разграничить понятия "атомный вес" и "молекулярный вес" для газообразных элементов и внести ясность в вопрос об атомных весах вообще.
В 1869 великий русский химик Дмитрий Иванович Менделеев, присутствовавший на конгрессе в Карлсруэ и слышавший доклад Канниццаро, опубликовал свою периодическую таблицу. Все известные элементы он расположил в соответствии с увеличением их атомного веса и разбил на периоды и группы, отвечающие изменению валентности. В таблице были оставлены пустые места для еще неоткрытых элементов; некоторым из них Менделеев даже присвоил названия (экабор, экаалюминий и экакремний; приставка "эка" означает "одно и то же"). Замечательная точность периодического закона была продемонстрирована открытиями галлия в 1875, идентичного по своим свойствам экаалюминию, скандия (экабора) в 1879 и германия (экакремния) в 1886.
Органическая химия. В течение всего 18 в. в вопросе о химических взаимоотношениях организмов и веществ ученые руководствовались доктриной витализма - учения, рассматривавшего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил. Этот взгляд был унаследован и многими учеными 19 в., хотя его основы были поколеблены еще в 1777, когда Лавуазье предположил, что дыхание - процесс, аналогичный горению. Первые экспериментальные свидетельства единства неорганического и органического мира были получены в начале 19 в.
В 1828 немецкий химик Фридрих Вёлер (1800-1882), нагревая цианат аммония (это соединение безоговорочно причислялось к неорганическим веществам), получил мочевину - продукт жизнедеятельности человека и животных. В 1845 Адольф Кольбе (1818-1884), ученик Вёлера, синтезировал уксусную кислоту из исходных элементов - углерода, водорода и кислорода. В 1850-е годы французский химик Пьер Бертло (1827-1907) начал систематическую работу по синтезу органических соединений и получил метиловый и этиловый спирты, метан, бензол, ацетилен. Систематическое исследование природных органических соединений показало, что все они содержат один или несколько атомов углерода и очень многие - атомы водорода. В результате всех этих исследований немецкий химик Фридрих Август Кекуле (1829-1896) в 1867 определил органическую химию как химию соединений углерода. Новый подход к органическому анализу был обобщен немецким химиком Юстусом Либихом (1803-1873) - создателем знаменитой исследовательской и учебной лаборатории в Гисенском университете. В 1837 Либих вместе с французским химиком Жаном Батистом Дюма (1800-1884) уточнил представление о радикале как о специфической неизменной группе атомов, входящей в состав многих органических соединений (пример - метильный радикал CH3). Становилось ясно, что определить строение больших молекул можно, лишь установив строение определенного числа радикалов.
Теория типов. Открытие и выделение огромного числа сложных углеродсодержащих соединений остро поставили вопрос о составе их молекул и привели к необходимости ревизовать существующую систему классификации. К 1840-м годам ученые-химики осознали, что дуалистические идеи Берцелиуса применимы только к неорганическим солям. В 1853 была предпринята попытка классифицировать все органические соединения по типам. Обобщенная "теория типов" была предложена французским химиком Шарлем Фредериком Жераром (1816-1856), который полагал, что объединение различных групп атомов определяется не электрическим зарядом этих групп, а их специфическими химическими свойствами. Жерар выделил четыре основных типа атомных групп, из которых, по его мнению, и состоят все соединения - как органические, так и неорганические.
Структурная химия. В 1857 Кекуле, исходя из теории валентности (под валентностью понималось число атомов водорода, вступающих в соединение с одним атомом данного элемента), предположил, что углерод четырехвалентен и потому может соединяться с четырьмя другими атомами, образуя длинные цепи - прямые или разветвленные. Поэтому органические молекулы стали изображать не в виде комбинаций радикалов, а в виде структурных формул - атомов и связей между ними. К 1860-м годам работами Кекуле и русского химика Александра Михайловича Бутлерова (1828-1886) был заложен фундамент структурной химии, позволяющей объяснять свойства веществ, основываясь на расположении атомов в их молекулах.
В 1874 датский химик Якоб Вант-Гофф (1852-1911) и французский химик Жозеф Ашиль Ле Бель (1847-1930) распространили эту идею на расположение атомов в пространстве. Они считали, что молекулы не плоские, а трехмерные структуры. Эта концепция позволяла объяснить многие известные явления, например пространственную изомерию, существование молекул одинакового состава, но с разными свойствами. Очень хорошо вписывались в нее данные Луи Пастера (1822-1895) об изомерах винной кислоты.
К концу 19 в. идеи структурной химии были подкреплены данными, полученными спектроскопическими методами. Эти методы позволяли получать информацию о строении молекул исходя из их спектров поглощения. К 1900 концепция трехмерной организации молекул - как сложных органических, так и неорганических - была принята практически всеми учеными.
Химическая технология. Успехи органической химии стимулировали бурное развитие химической промышленности, прежде всего в Германии. Была разработана технология производства серной кислоты, на основе которой получали взрывчатые вещества, красители и соду, необходимую для производства отбеливателей и мыла. Очень большую роль в развитии химических технологий сыграли работы Либиха и целой плеяды его учеников. В результате их деятельности в сельском хозяйстве стали применять химические удобрения и были созданы предприятия по их производству. Быстрое развитие лакокрасочной промышленности Германии было связано с работами Адольфа фон Байера (1835-1917) по индиго и другим красителям, а промышленный синтез аммиака под высоким давлением - с работами Фрица Габера (1868-1934).
Рождение физической химии. К концу 19 в. появились первые работы, в которых систематически изучались физические свойства различных веществ (температуры кипения и плавления, растворимость, молекулярный вес). Начало таким исследованиям положили Гей-Люссак и Вант-Гофф, показавшие, что растворимость солей зависит от температуры и давления. В 1867 норвежские химики Петер Вааге (1833-1900) и Като Максимилиан Гульдберг (1836-1902) сформулировали закон действующих масс, согласно которому скорость реакций зависит от концентраций реагентов. Использованный ими математический аппарат позволил найти очень важную величину, характеризующую любую химическую реакцию, - константу скорости.
Химическая термодинамика. Тем временем химики обратились к центральному вопросу физической химии - о влиянии теплоты на химические реакции. К середине 19 в. физики Уильям Томсон (лорд Кельвин) (1824-1907), Людвиг Больцман (1844-1906) и Джеймс Максвелл (1831-1879) выработали новые взгляды на природу теплоты. Отвергая калористическую теорию Лавуазье, они представляли теплоту как результат движения. Их идеи развил Рудольф Клаузиус (1822-1888). Он разработал кинетическую теорию, согласно которой такие величины, как объем, давление, температура, вязкость и скорость реакций, можно рассматривать исходя из представления о непрерывном движении молекул и их столкновениях. Одновременно с Томсоном (1850) Клазиус дал первую формулировку второго начала термодинамики, ввел понятия энтропии (1865), идеального газа, длины свободного пробега молекул.
Термодинамический подход к химическим реакциям применил в своих работах Август Фридрих Горстман (1842-1929), который на основе идей Клаузиуса попытался объяснить диссоциацию солей в растворе. В 1874-1878 американский химик Джозайя Уиллард Гиббс (1839-1903) предпринял систематическое изучение термодинамики химических реакций. Он ввел понятие свободной энергии и химического потенциала, объяснив суть закона действующих масс, применил термодинамические принципы при изучении равновесия между различными фазами при разных температуре, давлении и концентрации (правило фаз). Работы Гиббса создали фундамент современной химической термодинамики. Шведский химик Сванте Август Аррениус (1859-1927) создал теорию ионной диссоциации, объясняющую многие электрохимические явления, и ввел понятие энергии активации. Он также разработал электрохимический метод измерения молекулярной массы растворенных веществ.
Крупным ученым, благодаря которому физическая химия была признана самостоятельной областью знаний, был немецкий химик Вильгельм Оствальд (1853-1932), применивший концепции Гиббса при изучении катализа. В 1886 он написал первый учебник по физической химии, а в 1887 основал (вместе с Вант-Гоффом) журнал "Физическая химия" (Zeitschrift fr physikalische Chemie).