часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника.
На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р-угольных пирамид, т.е. многогранников, состоящих из р-угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р 3 (см. рис. 1,а) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р-угольника, называется правильной р-угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в, 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р-угольника, причем плоскости обоих p-угольников параллельны. Если эти два р-угольника (основания) конгруэнтны и расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника параллельными прямолинейными отрезками, то такой многогранник называется р-угольной призмой. Примерами двух р-угольных призм могут служить треугольная призма (р 3) на рис. 1,в и пятиугольная призма (р 5) на рис. 1,г. Если же основания расположены так, что вершины одного р-угольника соединены с вершинами другого р-угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д, то такой многогранник называется р-угольной антипризмой.
Кроме двух оснований, у р-угольной призмы имеются р граней - параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р-угольники, то призма называется прямой правильной р-угольной призмой. р-угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p-угольных основания. Если основаниями служат конгруэнтные правильные р-угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р-угольной антипризмой.
В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е. Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется "внутренней". Другая, оставшаяся часть, называется внешней.
Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а, 1,б, 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.
См. также:
МНОГОГРАННИК: ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
МНОГОГРАННИК: ФОРМУЛА ЭЙЛЕРА