МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ В середине 19 в. происходило не только развитие молекулярно-кинетической теории, но и становление термодинамики. Некоторые понятия термодинамики оказались полезными и для молекулярно-кинетической теории - это в первую очередь абсолютная температура и энтропия.
Тепловое равновесие. В термодинамике свойства веществ рассматриваются в основном исходя из представления о том, что любая система стремится к состоянию с наибольшей энтропией и, достигнув такого состояния, не может самопроизвольно выйти из него. Такое представление согласуется с молекулярно-кинетическим описанием поведения газа. Совокупность молекул газа обладает некоторой суммарной энергией, которая может быть распределена между отдельными молекулами огромным числом способов. Каким бы ни было начальное распределение энергии, если газ предоставить самому себе, то энергия быстро перераспределится и газ придет в состояние теплового равновесия, т.е. в состояние с наибольшей энтропией. Попытаемся сформулировать это утверждение более строго. Пусть N (E) dЕ - это число молекул газа с кинетической энергией в интервале от E до Е + dE. Независимо от начального распределения энергии газ, предоставленный сам себе, придет в состояние теплового равновесия с характерной функцией N (E), соответствующей установившейся температуре. Вместо энергий можно рассматривать скорости молекул. Обозначим через f (v) dv число молекул со скоростями, лежащими в интервале от v до v + dv. В газе всегда найдется некоторое число молекул со скоростями в интервале от v до v + dv. Уже мгновение спустя ни одна из этих молекул не будет обладать скоростью, лежащей в указанном интервале, поскольку все они претерпят одно или несколько столкновений. Но зато другие молекулы со скоростями, ранее значительно отличавшимися от v, в результате столкновений приобретут скорости, лежащие в интервале от v до v + dv. Если газ находится в стационарном состоянии, то число молекул, которые приобретут скорость v, через достаточно большой промежуток времени будет равно числу молекул, скорость которых перестанет быть равной v. Только в этом случае функция n (v) может оставаться постоянной. Это число, разумеется, зависит от распределения молекул газа по скоростям. Форму этого распределения в покоящемся газе установил Максвелл: если всего имеется N молекул, то число молекул со скоростями в интервале от v до v + dv равно
где параметр ? зависит от температуры (см. ниже).
Газовые законы. Приведенные выше оценки для средней скорости молекул воздуха на уровне моря соответствовали обычной температуре. Согласно молекулярно-кинетической теории, кинетическая энергия всех молекул газа и есть та теплота, которой он обладает. При более высокой температуре молекулы движутся быстрее и газ содержит больше теплоты. Как следует из формулы (1), если объем газа постоянен, то с ростом температуры его давление повышается. Именно так ведут себя все газы (закон Шарля). Если же газ нагревать при постоянном давлении, то он будет расширяться. Установлено, что при низком давлении для любого газа объемом V, содержащим N молекул, произведение давления на объем пропорционально абсолютной температуре:
где T - абсолютная температура, k - константа. Из закона Авогадро следует, что величина k одинакова для всех газов. Она называется постоянной Больцмана и равна 1,38?10-14 эрг/К.
Сравнив выражения (1) и (3), нетрудно заметить, что полная энергия поступательного движения N молекул, равная (1/2) Nmv2, пропорциональна абсолютной температуре и равна
С другой стороны, проинтегрировав выражение (2), получим, что полная энергия поступательного движения N молекул равна 3Nm /4? 2. Отсюда
Подставив выражение (5) в формулу (2), можно найти распределение молекул по скоростям при любой температуре T.
Молекулы многих распространенных газов, например азота и кислорода (основных компонентов атмосферного воздуха), состоят из двух атомов, а их молекула напоминает по форме гантель. Каждая такая молекула не только движется поступательно с огромной скоростью, но и очень быстро вращается. Помимо энергии поступательного движения, N молекул обладают энергией вращательного движения NkT, так что полная энергия N молекул равна (5/2) NkT.
Экспериментальная проверка распределения Максвелла. В 1929 появилась возможность непосредственно находить распределение молекул газа по скоростям. Если в стенке сосуда, содержащего газ или пар при определенной температуре, проделать маленькое отверстие или прорезать узкую щель, то молекулы будут вылетать через них наружу, каждая со своей скоростью. Если отверстие ведет в другой сосуд, из которого откачан воздух, то большинство молекул до первого столкновения успеют пролететь расстояние в несколько сантиметров.
В установке, схематически изображенной на рис. 2, имеется сосуд V, содержащий газ или пар, молекулы которого вылетают через щель S1; S2 и S3 - щели в поперечных пластинах; W1 и W2 - два диска, насаженных на общий вал R. В каждом диске прорезано несколько радиальных щелей. Щель S3 расположена так, что, если бы не было дисков, вылетевшие из щели S1 и прошедшие сквозь щель S2 молекулы пролетали бы и сквозь щель S3 и попадали на детектор D. Если одна из щелей диска W1 окажется напротив щели S2, то молекулы, пролетевшие сквозь щели S1 и S2, пройдут и сквозь щель диска W1, но их задержит диск W2, насаженный на вал R так, что его щели не совпадают со щелями диска W1. Если диски неподвижны или медленно вращаются, то молекулы из сосуда V не попадают в детектор D. Если же диски быстро вращаются с постоянной скоростью, то некоторые из молекул проходят сквозь оба диска. Нетрудно понять, какие молекулы смогут преодолеть оба препятствия, - те, которые преодолеют расстояние от W1 до W2 за время, необходимое для смещения щели диска W2 на нужный угол. Например, если все щели диска W2 повернуты на угол 2? относительно щелей диска W1, то в детектор попадут молекулы, которые пролетают от W1 до W2 за время поворота диска W2 на 2?. Изменяя частоту вращения вала с дисками, можно измерять скорости молекул, вылетающих из сосуда V, и построить их распределение. Полученное таким образом распределение хорошо согласуется с максвелловским.
Броуновское движение. В 19 в. метод измерения скоростей молекул, описанный выше, еще не был известен, но одно явление позволяло наблюдать непрестанное тепловое движение молекул в жидкости. Шотландский ботаник Р.Браун (в прежней транскрипции - Броун) в 1827, наблюдая под микроскопом за частицами цветочной пыльцы, взвешенными в воде, обнаружил, что они не стоят на месте, а все время движутся, словно что-то толкает их то в одну, то в другую сторону. Позднее было высказано предположение, что хаотическое движение частиц вызвано непрерывным тепловым движением молекул жидкости, а точные исследования движения, получившего название броуновского, подтвердили правильность этой гипотезы (см. БРОУНОВСКОЕ ДВИЖЕНИЕ).
Теплоемкость газа или пара. Количество теплоты, необходимое для повышения температуры некоторого количества вещества на 1 градус, называется его теплоемкостью. Из формулы (4) следует, что если температуру газа повысить при постоянном объеме от T до T + 1, то энергия поступательного движения увеличится на (3/2) Nk. Вся тепловая энергия одноатомного газа есть энергия поступательного движения. Следовательно, теплоемкость такого газа при постоянном объеме Cv (3/2) Nk, а теплоемкость на одну молекулу составляет (3/2) k. Теплоемкость N двухатомных молекул, обладающих еще и энергией вращательного движения kT, равна Cv (5/2) Nk, а на одну молекулу приходится (5/2) k. В обоих случаях теплоемкость не зависит от температуры, а тепловая энергия дается выражением
Давление насыщенного пара. Если налить немного воды в большой закрытый сосуд, в котором есть воздух, но отсутствуют водяные пары, то некоторое ее количество немедленно испарится и частички пара начнут распространяться по всему сосуду. Если объем сосуда очень велик по сравнению с объемом воды, то испарение будет идти до тех пор, пока вся вода не превратится в пар. Если же воды налито достаточно много, то испарится не вся она; скорость испарения будет постепенно уменьшаться и в конце концов процесс остановится - произойдет насыщение объема сосуда водяными парами. С позиций молекулярно-кинетической теории это объясняется следующим образом. Время от времени та или иная молекула воды, находящаяся в жидкой среде вблизи поверхности, получает от соседних молекул достаточно энергии, чтобы вырваться в паровоздушную среду. Здесь она сталкивается с другими такими же молекулами и с молекулами воздуха, описывая весьма замысловатую зигзагообразную траекторию. В своем движении она также ударяется о стенки сосуда и о поверхность воды; при этом она может отскочить от воды или поглотиться ею. Пока вода испаряется, число молекул пара, захватываемых ею из паровоздушной среды, остается меньше числа молекул, покидающих воду. Но наступает момент, когда эти величины уравниваются - устанавливается равновесие, и давление пара достигает насыщения. В таком состоянии число молекул в единице объема пара над жидкостью остается постоянным (конечно, если постоянна температура). Такая же картина наблюдается и для твердых тел, но для большинства тел давление пара становится ощутимым только при высоких температурах.