PLANT PHYSIOLOGY


Meaning of PLANT PHYSIOLOGY in English

Plant physiology General features of plant nutrition Plant nutrition includes the nutrients necessary for the growth, maintenance, and reproduction of individual plants; the mechanisms by which plants acquire such nutrients; and the structural, physiological, and biochemical roles these nutrients play in metabolism. Mode of nutrition All organisms obtain their nutrients from the environment, but not all organisms require the same nutrients, nor do they assimilate these nutrients in the same way. There are two basic nutritional types, autotrophs and heterotrophs. Heterotrophs require both inorganic and organic (carbon-containing) compounds as nutrient sources. Autotrophs obtain their nutrients from inorganic compounds, and their sole source of carbon is carbon dioxide (CO2). An autotroph is photoautotrophic if light energy is required to assimilate CO2 into the organic constituents of the cell. Furthermore, a photoautotroph that also uses water as a nutrient source and liberates oxygen in the energy-trapping process of photosynthesis is an oxygenic photoautotroph. The Earth's first such organisms are believed to have been the major sources of the present-day oxygen content of the atmosphere (approximately 21 percent). All plants, as well as many monerans and protists, are characteristically oxygenic photoautotrophs. Plants, as autotrophic organisms, use light energy to photosynthesize sugars from CO2 and water. They also synthesize amino acids and vitamins from carbon fixed in photosynthesis and from inorganic elements garnered from the environment. (Animals, as heterotrophic organisms, cannot synthesize many nutrients, including certain amino acids and vitamins, and so must take them from the environment.) Reproduction and life histories Each organism from inception to death goes through a sequence of genetically programmed developmental events constituting a life history. In eukaryotic organisms, development involves cellular events such as mitosis, meiosis, and syngamy (fertilization), which variously proceed by nuclear division (karyokinesis), cytoplasmic division (cytokinesis), cytoplasmic fusion without the union of nuclei (plasmogamy), or nuclear fusion (karyogamy). This discussion focuses on the life histories of land plantsthat is, nonvascular (bryophytes) and vascular plants, the latter comprising nonseed vascular plants (pteridophytes) and seed plants (gymnosperms and angiosperms). Although algae and fungi were traditionally regarded as plants, fungi are now universally considered as constituting the kingdom Fungi, whereas algae are often included in the kingdom Protista. Life histories The chromosome number in cells may be haploid, with one set of chromosomes per cell (written 1n); diploid, with two sets (2n); polyploid, with three or more sets; or dikaryotic, with a pair of nuclei in a cell (n + n), a condition that occurs mainly in fungi. Three types of sexual life histories have been recognized for the eukaryotic organisms: 1n, or haplontic; 2n, or diplontic; and 1n-2n (2n-1n). The former two types have collectively been called haplobiontic or monobiontic, because the life histories include only one phase; the third type has been called haplodiplontic, diplohaplontic, diplobiontic, dibiontic, or sporic, because the life history involves two alternating multicellular phases, or generations. Algae and fungi have many variants of all three types, especially the first, while land plants have the third type exclusively. In addition, all land plants are strictly oogamous, having motile sperm and nonmotile eggs. (In contrast, the algae and fungi may be oogamous or, frequently, isogamous or anisogamous, the latter conditions characterized by morphologically similar gametes that are either of the same size or with the female gametes of a larger size, respectively.) The 1n-2n life history of bryophytes and vascular plants comprises the entire sequence of developmental events from zygote formation via syngamy (fertilization) to spore formation via meiosis. Syngamy and meiosis are successive events in a sexual life history. Syngamy involves the union of two 1n gametes to form a 2n zygote, which eventually develops into a 2n sporophyte. Meiosis involves the division of a 2n sporocyte (meiocyte, spore mother cell, pollen mother cell) to produce four 1n spores. These four spores constitute a tetrad. Gametes are 1n cells that fuse to form a zygote, whereas spores are 1n cells that develop into gameophytes without uniting with another cell. Syngamy and meiosis are generally inseparable and alternate; consequently, the sporophyte develops from a zygote formed via syngamy, whereas the haploid gametophyte results after the sporophyte undergoes meiosis to form spores. These two phases, or generations, are multicellular in land plants. This type of life history involves an alternation of generations, a phenomenon not occurring in haplobiontic (1n or 2n) life histories. In the latter, such alternation is evident in both the morphological and the nuclear (chromosomal) changes that occur. Meiosis and syngamy (fertilization) are the critical events that separate the sporophytic and gametophytic generations. (All nonmeiotic cell divisions involved in development are mitotic, in which chromosomes replicate, giving each daughter cell a full complement.) The zygote is the first stage and the sporocyte the last stage of the sporophytic generation, whereas the spore is the first stage and the gametes (eggs, sperm) the last stage of the gametophytic generation. The sporocytes of the multicellular 2n sporophyte divide meiotically to form 1n spores (sporogenesis). Each meiotic division results in a tetrad of four spores. (The land plants produce only sexual spores resulting from meiosis.) Each spore divides mitotically to form a multicellular 1n gametophyte, which eventually produces gametes mitotically (gametogenesis). The gametes (an egg and a sperm) fuse in the process of syngamy to form a 2n zygote. The zygote divides mitotically to form a multicellular embryo (embryogenesis), which is protected by either gametophytic tissues (such as remnants of archegonia in the nonseed land plants) or sporophytic tissues (the seed in the seed plants). An embryo, which is actually an immature sporophyte, is universally found among the land plants and often becomes dormant, but eventually grows into the mature sporophyte. During organogenesis in vascular plants the embryo develops into the mature sporophyte, with its vegetative organs (root and shoot, the latter consisting of stem and leaves) and reproductive structures (cones or strobili, flowers, etc.). In all land plants, the two alternating generations are morphologically dissimilar, and the gametophyte is initially dominant over the sporophyte. In all bryophytes the gametophyte remains dominant, and the sporophyte is physiologically dependent on it. A homosporous life history, in which only one morphological type of spore is produced, is found in most bryophytes, although a few (e.g., Macromitrium) exhibit an anisosporous life history, in which the same sporangium produces morphologically similar spores of two different sizes. In vascular plants, the sporophyte ultimately becomes physiologically independent of the gametophyte. A homosporous life history occurs in Psilotum (Psilotophyta), Lycopodium (Lycophyta), Equisetum (Sphenophyta), and most ferns (Filicophyta). A functionally heterosporous life history, in which the same sporangium produces morphologically similar but physiologically different spores, has been reported in a few pteridophytese.g., Equisetum. Finally, a heterosporous life history, in which different sporangia produce morphologically different types of spores, occurs in Selaginella, Isoetes (Lycophyta), a few aquatic ferns (Filicophyta), and all seed plants.

Britannica English vocabulary.      Английский словарь Британика.