# Meaning of EXACT EQUATION in English

EXACT EQUATION

type of differential equation that can be solved directly without the use of any of the special techniques in the subject. A first-order differential equation (of one variable) is called exact, or an exact differential, if it is the result of a simple differentiation. The equation P(x,y)y+ Q(x,y) = 0 (or in the equivalent form P(x,y)dy + Q(x,y)dx = 0) is exact if Px(x,y) = Qy(x,y). In this case, there will be a function R(x,y) the partial x-derivative of which is P and the partial y-derivative of which is Q such that the equation R(x,y) = c (where c is constant) will implicitly define a function y that will satisfy the original differential equation. For example, in the equation (x2 + 2y)y+ 2xy + 1 = 0, the x-derivative of x2 + 2y is 2x and the y-derivative of 2xy + 1 is also 2x, and the function R = yx2 + x + y2 satisfies the conditions Rx = P and Ry = Q. The function defined implicitly by yx2 + x + y2 = c will solve the original equation. Sometimes if an equation is not exact, it can be made exact by multiplying each term by a suitable function called an integrating factor, which will usually be given by 1/(Px Qy). For example, if the equation 3y + 2xy= 0 is multiplied by 1/5xy, it becomes 3/x + 2y/y = 0, which is the direct result of differentiating the equation in which the natural logarithmic function, written ln, appears: 3 ln x + 2 ln y = c, or equivalently x3y2 = c, which implicitly defines a function that will satisfy the original equation. Higher-order equations are also called exact if they are the result of differentiating a lower-order equation. For example, the second-order equation p(x)y + q(x)y + r(x)y = 0 is exact if there is a first-order expression p(x)y + s(x)y such that its derivative is the given equation. The given equation will be exact if, and only if, p - q + r = 0, in which case s in the reduced equation will equal q - p. If the equation is not exact, there may be a function z(x), also called an integrating factor, such that when the equation is multiplied by the function z it becomes exact.

Britannica English vocabulary.      Английский словарь Британика.